Аминокислоты свойства таблица
Аминокислоты
Немного истории
Большинство аминокислот были открыты после во второй половине двадцатого века во время поиска новых антибиотиков из грибков, семян, фруктов и жидкостей животных. Первая аминокислота – аспарагин была открыта в 1806 году. Она была выделена из сока спаржи французским химиком Луи-Никола Вокленом и помощником Пьером Жаном Робике. Чуть позже, был получен лейцин из сыра и творога.
Что такое аминокислоты
С точки зрения биохимии, аминокислоты – это органические вещества, состоящие из углеродного скелета, аминной и карбоксильной группы. Благодаря последним двум радикалам, аминокислоты обладают уникальной способностью – проявлять свойства как кислот, так и щелочей.
Протеины – это 20 % человеческого тела, они принимают участие во всех биохимических процессах, а аминокислоты – это «строительный материал» для них. Клетки и ткани человеческого организма состоят преимущественно из аминокислот, ключевая роль которых – транспортировка и хранение питательных веществ.
Аминокислоты жизненно необходимы организму, без них невозможен синтез гормонов, пигментов, витаминов и пуринов. Далеко не все аминокислоты человеческий организм, в отличие от некоторых микроорганизмов и растений, может синтезировать самостоятельно, их необходимо получать из продуктов питания.
На сегодняшний день известно около 500 аминокислот, встречающихся в природе. Но только 20 из них, так называемых стандартных, протеиногенных аминокислот. Они, собственно, и составляют полипептидную цепь, содержащую генетический код.
Таблица. Стандартные протеиногенные аминокислоты
Аминокислота
Аббревиатура
Источник
Конглутин, легумин (ростки спаржи)
Существует несколько способов классификации аминокислот, самая популярная – это классификация по способу синтезирования. По ней аминокислоты разделяют на два вида:
- Незаменимые – аминокислоты, которые не синтезируются в человеческом теле;
- Заменимые – те, что человеческий организм способен воспроизводить самостоятельно.
Заменимые и незаменимые аминокислоты
К заменимым, но необходимым человеческому организму, относят следующие аминокислоты: аланин, аспарагин, аспартат, глицин, глутамин, глутамат, пролин, серин, тирозин, цистеин, гидроксипролин, гидроксилизин.
Незаменимыми называют аминокислоты, не способные самостоятельно синтезироваться в организме человека к ним относят: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин, гистидин, аргинин. В организме ребенка также не синтезируется аргинин, по этому его также относят к незаменимым.
В каких продуктах содержатся аминокислоты
Аминокислоты – это составляющие части белка и, соответственно, логичным было бы предположить, что содержатся они именно в белковых продуктах, и это действительно так. Большое количество аминокислот содержится в яйцах, молочных продуктах, мясе и рыбе. Из продуктов растительного происхождения также можно получить аминокислоты незаменимые для организма. Высоко их содержание в сое, чечевице, фасоли и других бобовых. Орехи и семена в большом количестве содержат гистидин, аргинин и лизин, а крупы содержат лейцин, валин и изолейцин.
Ниже приведена таблица, из которой видно из каких продуктов можно получить незаменимые аминокислоты и их роль в организме.
Таблица. Продукты, содержащие незаменимые аминокислоты
Название
В каких продуктах содержится
Роль в организме
Орехи, овес, рыба, яйца, курица, чечевица
Снижает содержание сахара в крови
Нут, чечевица, кешью, мясо, соя, рыба, яйца, печень, миндаль, мясо
Восстанавливает мышечную ткань
Амарант, пшеница, рыба, мясо, большинство молочных продуктов
Принимает участие в усвоении кальция
Арахис, грибы, мясо, бобовые, молочные продукты, многие зерновые
Принимает участие в обменных процессах азота
Говядина, орехи, творог, молоко, рыба, яйца, разные бобовые
Яйца, орехи, бобы, молочные продукты
Фасоль, соя, яйца, мясо, рыба, бобовые, чечевица
Принимает участие в защите от радиации
Кунжут, овес, бобовые, арахис, кедровые орехи, большинство молочных продуктов, курица, индейка, мясо, рыба, сушенные финики
Улучшает и делает сон глубже
Чечевица, соевые бобы, арахис, тунец, лосось, говяжье и куриное филе, свиная вырезка
Принимает участие в противовоспалительных реакциях
Йогурт, кунжут, семена тыквы, швейцарский сыр, говядина, свинина, арахис
Способствует росту и восстановлению тканей организма
Подробнее о каждой аминокислоте вы можете узнать, перейдя на ее страничку.
Наш организм нуждается в аминокислотах ежедневно и, согласно биологическим исследованиям, суточная норма потребления белка составляет от 0.5 до 2 грамм в сутки на 1 килограмм веса. Из разных продуктов белок усваивается организмом по-разному. Считается, что лучше всего усваивается белок полученный из яиц, творога и рыбы.
Аминокислоты в организме человека
Организм человека на 20% состоит из белка – он является главным строительным материалом, для мышечной ткани, всех органов и клеток. Белок – это наша кожа и волосы, клетки крови, мышцы и все остальные системы.
Аминокислоты, в свою очередь, являются строительным материалом для белка. По сути можно сказать, что белок (протеин) состоит из аминокислот.
В организме человека аминокислоты выполняют важнейшие функции: они принимают участие в синтезе гормонов, пигментов и витаминов, играют ключевую роль в транспортировке и хранении питательных веществ.
Вот перечень лишь нескольких, самых важных функций аминокислот в организме:
- В первую очередь аминокислоты нужны для формирования белка, который входит в состав мышечной ткани связок и сухожилий.
- Аминокислоты оптимизируют восстановительные процессы, ускоряют заживление повреждений кожных покровов.
- Аминокислоты очень важны для нормального функционирования головного мозга и нервной системы.
- Важную роль, играют аминокислоты и в образовании ферментов.
- Без аминокислот невозможен нормальный качественный сон.
- Ну и, наконец, аминокислоты влияют на здоровье волос, ногтей и кожи.
Из всех вышеперечисленных пунктов понятно, что аминокислоты, человеку необходимы и получать их нужно в достатке, для нормального функционирования всех систем организма. Ниже мы рассмотрим, что бывает при недостатке аминокислот, их избытке и из каких продуктов можно получить незаменимые аминокислоты.
Нехватка и избыток аминокислот
Наш организм устроен так, что все должно находиться в гармонии и балансе. Поэтому негативные последствия возникают как при нехватке аминокислот, так и при их избытке. Каждая аминокислота выполняет в организме свою функцию, у нее свои задачи, и соответственно часто бывает так, что не хватает в организме не всех аминокислот, а лишь нескольких, чтобы выявить нехватку, существует специальный анализ крови. Также потребуется сдать анализ крови на нехватку витаминов, потому что аминокислоты растворимы и в нашем организме взаимодействуют с витаминами группы В, А, С и Е.
При нехватке аминокислот у человека наблюдаются следующие симптомы:
- Слабость, сонливость.
- Снижение аппетита или полная его потеря.
- Выпадение волос, ухудшение состояния кожи.
- Задержка роста и развития у детей.
- Анемия.
- Снижение иммунитета, и как следствие низкая сопротивляемость к вирусам и инфекциям.
- Избыток аминокислот, также как и их нехватка ведет к нарушениям работы различных систем организма. Как правило негативные последствия от избытка аминокислот возможны только при дефиците селена и недостатке витаминов А, Е, С, В.
При избытке аминокислот в организме, могут возникнуть следующие проблемы: нарушение функции щитовидной железы, гипертония (переизбыток тирозина), проблемы с суставами (переизбыток гистидина), ранняя седина (переизбыток гистидина), повышается риск развития инфарктов и инсультов (переизбыток метионина).
Таблица. Применение аминокислот и их дозировка
Аминокислота
Применение
Дозировка (в качестве биодобавки для спортсменов)
Передозировка;
Дефицит
Лечит артрит, нервную глухоту, улучшает пищеварение, необходим младенцам и детям во время роста
8-10 мг на 1 кг веса (минимум 1 г в сутки)
Психические расстройства, тревога, шизофрения, подверженность стрессам;
Лечит герпес, добавляет энергию, способствует производству мышечного белка, борется с усталостью, поддерживает баланс азота в организме, важен для поглощения и сохранения кальция, способствует образованию коллагена
12 мг на 1 кг веса
Повышение холестерина, диарея, камни в желчном пузыре;
Нарушение выработки ферментов, снижение веса, снижение аппетита, ухудшение концентрации.
Лечит депрессии, артрит, нервные расстройства, судороги, снимает напряжение с мышц, важен для производства нейротрансмиттеров серотонина и мелатонина
1 мг на 1 кг веса
Повышенное артериальное давление, мигрени, тошнота, нарушение работы сердца и нервной системы. Не рекомендуется беременным и диабетикам;
Вялость, слабость, задержка роста, нарушение функций печени.
Лечение печени, артрита, депрессий, ускоряет метаболизм жиров и улучшает пищеварение, антиоксидант, предотвращает накопление лишних жиров в сосудах и печени, выводит токсины
12 мг на 1 кг веса
Возможна при дефиците витаминов группы В. Атеросклероз;
Жировое перерождение печени, замедление роста, вялость, отеки, кожные болезни.
Предотвращает атрофию мышц, природный анаболический агент, способствует заживлению ран и важен для выработки гормона роста
16 мг на 1 кг веса
Повышает уровень аммиака;
Заживляет раны, высвобождает гормон роста, регулирует сахар в крови, важен для формирования гемоглобина, отвечает за структуру мышц
10-12 мг на 1 кг веса
Вызывает частое мочеиспускание, осторожно принимать при болезнях почек или печени;
Регулирует баланс азота, восстанавливает и способствует росту мышечной ткани
16 мг на 1 кг веса
Покалывания кожи, галлюцинации, запрещен людям с болезнями печени или почек;
Болезнь «кленового сиропа».
Важен для выработки коллагена, эластина, антител, поддерживает здоровье мышц, стимулирует рост, применяется для лечения психики
8 мг на 1 кг веса
Раздражительность, ослабление иммунитета.
Важен для производства серотонина и мелатонина, необходим в период роста
3,5 мг на 1 кг веса
Головокружение, мигрени, рвота, диарея;
Может послужить причиной развития туберкулеза, рака, диабета, слабоумия.
Отвечает за восстановление мышц, быстрое заживление ран и травм, выводит шлаки, укрепляет иммунитет
0,4 мг на 1 кг веса
Болезни поджелудочной железы, печени;
Снижение артериального давления, слабость, расстройство пищеварения.
В зоне риска оказываются люди с генетическими нарушениями в процессе усвоения аминокислот, вегетарианцы, бодибилдеры и люди, которые просто не следят за своим питанием.
Аминокислоты в спортивном питании
Дополнительный прием аминокислот в последнее время стал очень популярен среди спортсменов, а особенно бодибилдеров. Без достаточного количества аминокислот, невозможен рост мышечной массы. Все дело в том, что наращивание мышечной массы представляет собой систематический процесс микроповреждений мышечных волокон и их заживления. И как раз для заживления мышечных волокон, и нужен белок, как строительный материал. Чтобы употреблять достаточное количество белка, спортсмену необходимо тщательно продумывать свой рацион, в условиях современного темпа жизни, это не всегда возможно и тут приходят на выручку протеиновые и аминокислотные комплексы (ВСАА).
ВСАА (от англ. Branched-chain amino acids — Аминокислоты с разветвленными цепочками) — комплекс, состоящий из трех незаменимых аминокислот:
- Лейцин (Leucine)
- Изолейцин (Isoleucine)
- Валин(Valine)
Лейцин, изолейцин и валин, составляют 35% всех аминокислот в мышечных тканях и принимают участие в процессах анаболизма и восстановления мышц, а также обладают антикатаболическим действием. ВСАА – незаменимые аминокислоты и не могут синтезироваться самостоятельно, поэтому человек вынужден получать их с пищей или специальными добавками в виде капсул или порошка. Попадая в организм ВСАА в первую очередь метаболируются в мышцах, и являются своеобразным «топливом» для роста мышечной массы. Этим они и отличаются от остальных 17 аминокислот. Это свойство помогает значительно улучшить спортивные показатели, улучшает самочувствие спортсмена после длительной тренировки. ВСАА безопасны для здоровья, при непревышении дозировки.
Следует отметить, что принимать протеин и аминокислотные комплексы, следует согласно инструкции на упаковке, не превышая суточную норму.
Резюмируя можно с уверенностью сказать, что аминокислоты – это то, что нужно нашему организму ежедневно для поддержания нормальной жизнедеятельности всех систем организма. Получить их можно не только из продуктов животного происхождения, но и из круп, бобовых и орехов. Если человек питается полноценно, не занимается бодибилдингом и у него нет каких-либо генетических отклонений, то дополнительный прием аминокислот в порошках и капсулах ему не требуется.
Аминокислоты. Свойства аминокислот.
Аминокислоты, белки и пептиды являются примерами соединений, описанных далее. Многие биологически активные молекулы включают несколько химически различных функциональных групп, которые могут взаимодействовать между собой и с функциональными группа друг друга.
Аминокислоты.
Аминокислоты – органические бифункциональные соединения, в состав которых входит карбоксильная группа –СООН, а аминогруппа — NH2.
Разделяют α и β — аминокислоты:
В природе встречаются в основном α-кислоты. В состав белков входят 19 аминокислот и ода иминокислота (С5Н9NO2):
Самая простая аминокислота – глицин. Остальные аминокислоты можно разделить на следующие основные группы:
1) гомологи глицина – аланин, валин, лейцин, изолейцин.
2) серосодержащие аминокислоты – цистеин, метионин.
3) ароматические аминокислоты – фенилаланин, тирозин, триптофан.
4) аминокислоты с кислотным радикалом – аспарагиовая и глутаминовая кислота.
5) аминокислоты с алифатической гидрокси-группой – серин, треонин.
6) аминокислоты с амидной группой – аспарагин, глутамин.
7) аминокислоты с основным радикалом – гистидин, лизин, аргинин.
Изомерия аминокислот .
Во всех аминокислотах (кроме глицина) атом углерода связан с 4-мя разными заместителями, поэтому все аминокислоты могут существовать в виде 2-х изомеров (энантиомеров). Если L и D – энантиомеры.
Физические свойства аминокислот.
Аминокислоты представляют собой твердые кристаллические вещества, хорошо растворимые в воде и мало растворимые в неполярных растворителях.
Получение аминокислот.
1. Замещение атома галогена на аминогруппу в галогензамещеных кислотах:
Химические свойства аминокислот.
Аминокислоты – это амфотерные соединения, т.к. содержат в своём составе 2 противоположные функциональные группы – аминогруппу и гидроксильную группу. Поэтому реагируют и с кислотами и с щелочами:
Кислотно-основные превращение можно представить в виде:
Реагирует с азотистой кислотой:
Реагируют со спиртами в присутствие газообразного HCl:
Качественные реакции аминокислот.
Окисление нингидрином с образованием продуктов, окрашенных в сине-фиолетовый цвет. Иминокислота пролин дает с нингидрином желтый цвет.
2. При нагревании с концентрированной азотной кислотой протекает нитрование бензольного кольца и образуются соединения желтого цвета.
Аминокислоты свойства таблица
Среди азотсодержащих органических веществ имеются соединения с двойственной функцией. Особенно важными из них являются аминокислоты.
В клетках и тканях живых организмов встречается около 300 различных аминокислот, но только 20 ( α-аминокислоты ) из них служат звеньями (мономерами), из которых построены пептиды и белки всех организмов (поэтому их называют белковыми аминокислотами). Последовательность расположения этих аминокислот в белках закодирована в последовательности нуклеотидов соответствующих генов. Остальные аминокислоты встречаются как в виде свободных молекул, так и в связанном виде. Многие из аминокислот встречаются лишь в определенных организмах, а есть и такие, которые обнаруживаются только в одном из великого множества описанных организмов. Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты; животные и человек не способны к образованию так называемых незаменимых аминокислот, получаемых с пищей. Аминокислоты участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.; некоторые аминокислоты служат посредниками при передаче нервных импульсов.
Аминокислоты — органические амфотерные соединения, в состав которых входят карбоксильные группы – СООН и аминогруппы -NH 2 .
Аминокислоты можно рассматривать как карбоновые кислоты, в молекулах которых атом водорода в радикале замещен аминогруппой.
1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α-, β-, γ-, δ-, ε- и т. д.
2. В зависимости от количества функциональных групп различают кислые, нейтральные и основные.
3. По характеру углеводородного радикала различают алифатические (жирные), ароматические, серосодержащие и гетероциклические аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду.
Примером ароматической аминокислоты может служить пара -аминобензойная кислота:
Примером гетероциклической аминокислоты может служить триптофан – незаменимая α- аминокислота
По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе. Нумерация углеродной цепи с атома углерода карбоксильной группы.
Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита.
Для α-аминокислот R-CH(NH2)COOH
, которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия.
Строение аминокислот: структурные формулы и классификации
Сбоку к углеродному скелету может быть присоединена еще какая-нибудь химическая группировка, которая придает данному веществу особые свойства.
Углеродная цепочка вместе с кислотным хвостом, присоединенная к аминной голове, называется мудреным словом «алифатический радикал».
Номенклатура аминокислот
Углеродная цепочка (скелет) может состоять как из 1 атома углерода, так и из нескольких. В последнем случае имеет значение, к какому атому углерода, начиная счет от карбоксильной группы, присоединится аминная голова. Это может быть как 1-ый атом углерода, так и 2-ой, 3-ий и далее. Химики договорились обозначать атомы углерода не цифрами, а буквами греческого алфавита: α — 1-ый атом углерода, начиная с карбоксильного хвоста, β— 2-ой, γ — 3-й, и т.д.
Если аминогруппа присоединяется к углероду в α-положении, такую аминокислоту называют α-аминокислотой, соответственно, если аминогруппа присоединена в β-положении — то это β-аминокислота, если в γ — то γ -аминокислота.
Все 20 природных протеиногенных аминокислот относятся к группе α -аминокислот.
Из β — аминокислот наиболее известен β-аланин, а из γ-аминокислот наиболее известна γ-аминомасляная кислота (ГАМК). Их структурные формулы приведены ниже.
Таблица 1 Строение протеиногенных аминокислот
Таблица 2 Структурные формулы аминокислот
Таблица 3 Модели структурных формул аминокислот
Классификация аминокислот
Существует несколько классификаций аминокислот:
- В зависимости от строения алифатического радикала, аминокислоты подразделяются на следующие группы:
- Просто аминокислоты с алифатическим радикалом, т.е. такие, у которых углеродная цепочка не содержит дополнительных затей. Их называют МоноАминоМоноКарбоновые: глицин и аланин
- Аминокислоты с разветвленной боковой цепью, у которых углеродный скелет образует боковые вилки: валин, лейцин, изолейцин. Изолейцин по химическому составу не отличим от лейцина, но его углеродный скелет по-другому загнут, т.е. он является стереоизомером. Иногда его выделяют в отдельную аминокислоту, а иногда – нет. Аминокислоты с разветвленной боковой цепью тоже относятся к группе МоноАминоМоноКарбоновых аминокислот.
- Аминокислоты, у которых в алифатическом радикале имеются разные группировки:
Спиртовая – ОН. Их называют ОксиМоноАминоМоноКарбоновые: серин и треонин
Карбоксильная, т.е. второй кислотный хвост. Это МоноАминоДиКарбоновые аминокислоты: аспарагиновая кислота (аспартат) и глутаминовая кислота (глутамат). Их называют еще Кислые аминокислоты, этакое «масло масляное».
Амидная. Карбоксильный хвост отрастил себе вторую аминную голову: аспарагин и глутамин. Кажется, понятным, что это производные соответственно аспартата и глутамата. Их называют Амиды МоноАминоДиКарбоновых аминокислот
Аминная. Вторая аминная голова присоединилась к углеродному скелету: лизин
Гуанидиновая: дополнительные аминные вставки — аргинин
Лизин и Аргинин относят также к группе ДиАминоМоноКарбоновых аминокислот, ибо у них есть по второй аминной группе. Поскольку эти аминокислоты в нейтральной среде (вода, рН=7), проявляют щелочные (основные) свойства, повышая водородный показатель (рН становится › 7), то их относят к группе Основных аминокислот
Серосодержащие аминокислоты. Имеют в радикале атом серы S: цистеин, метионин
Аминокислоты, содержащие ароматический радикал– углеродное колечко или Ароматические аминокислоты фенилаланин, тирозин, триптофан
Аминокислоты с гетероциклическим радикалом – колечко с атомом азота вместо углерода, поэтому он «гетеро» — «разнообразный»: триптофан и гистидин.
Нетрудно заметить, что триптофан входит в группу как ароматических аминокислот, так и в группу аминокислот с гетероциклическим радикалом, а все потому, что у него есть как гетороциклический радикал, так и ароматический.
Иминокислоты – углеродный скелет не вытянут в цепочку, а замкнут в колечко, из которого торчат аминная голова и рядом кислотный хвост: пролин и оксипролин
2. Классификация, в основу которой положена полярность алифатического радикала.
- Неполярные (гидрофобные) аминокислоты. Они имеют неполярные связи между атомами C-C, C-H. Это глицин, аланин, валин, лейцин, изолейцин, пролин, триптофан — 8 аминокислот
- Полярные незаряженные (гидрофильные) аминокислоты. Они имеют полярные связи между атомами С-О, C-N, O-H, S-H. Это серин, аспарагин, глутамин, треонин, метионин — 5 аминокислот
- Полярные отрицательно-заряженные аминокислоты. У них в радикале присутствуют группы, которые в водной среде (рН = 7) заряжены отрицательно, т.е. они выступают как отрицательно-заряженный ион (анион). Это аспарагиновая и глутаминовая кислоты, тирозин, цистеин — 4 аминокислоты
- Полярные положительно-заряженные аминокислоты. У них в радикале присутствуют группы, которые в водной среде (рН=7) заряжены положительно, т.е. они выступают как положительно-заряженный ион (катион). Это лизин, аргинин, гистидин — 3 аминокислоты.
Чем больше в белке аминокислот, обладающих полярностью, тем выше способность белка к химическим реакциям, т.е. его реактогенность. С реактогенностью белка непосредственно связаны его функции. Белки соединительной ткани, например кератин, входящий в состав волос и ногтей, имеет мало полярных аминокислот. Напротив, ферменты — белки-катализаторы биохимических реакций, обладают аминокислотным составом с множеством полярных групп.
3. Классификация по отношению к водородному показателю (рН)
- Аминокислоты, обладающие нейтральными свойствами с рН 5,97 – 6,02. Это глицин, аланин, серин, валин, лейцин, изолейцин,треонин, цистин, метионин — 9 аминокислот. Они имеют одну аминную голову и один карбоксильный хвост
- Аминокислоты, обладающие слабокислыми свойствами рН 3,0 – 5,7. Это аспарагиновая и глутаминовая кислоты. Они имеют одну аминную голову, но два карбоксильных хвоста, поэтому их называют «кислотами».
- Аминокислоты, обладающие щелочными свойствами с рН 9,7 – 10,7. У них две аминные головы и один карбоксильный хвост. Это лизин, аргинин, гистидин.
4. Классификация по способности к синтезу в организме человека и животных.
- Заменимые аминокислоты: глицин, серин, аланин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, пролин
- Условно-заменимые аминокислоты: аргинин, гистидин, тирозин, цистеин
- Незаменимые аминокислоты: валин, лейцин, изолейцин, треонин, лизин, триптофан, фенилаланин, метионин
5. Классификация аминокислот по путям биосинтеза.
В живых организмах аминокислоты могут производится (синтезироваться) из других соединений. Путь биосинтеза — это последовательность химических реакций, которые обусловлены наследственной (генетической) матрицей. Он записан в генетическом коде и обусловлен наличием ферментов, запускающих данные реакции. Биосинтез идет не хаотично, а количество исходных и промежуточных соединений ограничено. Так из всего многообразия природных аминокислот для синтеза белка используются только 20. Соответственно, исходные и промежуточные соединения на путях биосинтеза отдельных аминокислот образуют кластеры или семейства, где соединения могут преобразовываться друг в друга.
- Семейство аспартата: аспарагиновая кислота (аспартат), аспарагин, изолейцин, лизин, треонин, метионин
- Семейство глутамата: глутаминовая кислота (глутамат), глутамин, пролин, аргинин
- Семейство пирувата: аланин, валин, лейцин
- Семейство серина: серин, глицин, цистеин
- Семейство пентоз: гистидин, триптофан, фенилаланин, тирозин
- Семейство шикимата: триптофан, фенилаланин, тирозин
Надо сказать, что данные пути метаболизма реализуются в биологических системах, но не все они имеются в организме человека. Так высшие животные и человек не способны синтезировать ароматическое кольцо, поэтому путь шикимата — это не для нас. Аналогично с другими путями синтеза незаменимых аминокислот. Для наглядности незаменимые аминокислоты выделены жирным шрифтом.
6. Классификация аминокислот по путям катаболизма
Катаболизм — процесс распада, противоположен анаболизму или процессу синтеза. В организме катаболизм также обусловлен генетической программой и набором ферментов. Конечным итогом деградации аминокислот является аммиак, вода и углекислый газ, а также выделяется энергия в виде тепла или связанная в молекулах АТФ. В зависимости от промежуточных соединений, дающих энергию, аминокислоты подразделяются на следующие группы:
- Глюкогенные: дающие метаболиты (промежуточные соединения), из которых может быть синтезирована глюкоза: глицин, аланин, серин, треонин, валин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, пролин, аргинин, гистидин, цистин, метионин
- Кетогенные: распадающиеся до ацетоацетилКоА и ацетилКоА, из которых могут быть синтезированы кетонные тела: лизин, лейцин
- Промежуточные: при распаде этих аминокислот образуются метаболиты обоих типов: изолейцин, триптофан, фенилаланин, тирозин
Подробнее о глюкогенных и кетогенных аминокислотах можно прочитать здесь: Гликогенные аминокислоты
Правые и левые аминокислоты
В зависимости от прикрепления аминогруппы по отношению к карбоксильному хвосту в углеродной цепочке, аминокислоты могут быть «правыми» или «левыми», иначе говоря, их относят к D- или L- изомерам. Такие формы называют оптически активными, они не отличаются по химическому составу, но в пространстве относятся друг другу, как левая и правая рука.
В белковые молекулах присутствуют только L (левые) -изомеры аминокислот, правые (D) -изомеры могут обладать особыми свойствами и выступать как медиаторы, т.е. сигнальные молекулы, но чаще они образуют балласт. В обычных продуктах питания D-аминокислот практически нет. Они образуются при химическом синтезе и могут встречаться в искусственных протеинах, используемых в спортивном питании или в качестве биологически-активных добавок к пище. D-аминокислоты с трудом расщепляются ферментами, ибо они не физиологичны. В печени и почках содержится особый фермент — оксидаза D-аминокислот, предполагают, что она превращает нефизиологичные правые аминокислоты в физиологичные левые. Количество ее невелико, т.к. обычно в пище содержится очень мало D-аминокислот.
При химическом синтезе образуется равное количество D- и L- изомеров, но в синтезе белка участвуют аминокислоты только L – ряда. Это следует учитывать лицам, принимающим препараты аминокислот: L-аминокислоты будут существенно дороже из-за необходимости их выделения из смеси, но эффект от их применения будет существенно выше
Читайте далее о том, что делает в организме каждая аминокислота. Поверьте, им есть, чем заняться. С вами была Галина Батуро. Делитесь информацией в соц.сетях, оставляйте комментарии.