Onlyfashionsport.ru

Спорт и питание
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Конечные продукты метаболизма у человека

Основные конечные продукты метаболизма у человека и пути их выведения.

Третий этап — выведение конечных продуктов метаболизма в составе мочи, кала, пота, через легкие в виде CO2 и т. д. Образовавшиеся при распаде пищи конечные продукты метаболизма либо выводятся через покровы тела и стенки трахей (С02), либо абсорбируются в задней кишке (Н2О), либо удаляются с остатками непереваренной пищи — экскрементами (мочевина, мочевая кислота, аммиак и др.).

6. Челночные механизмы транспорта водорода НАДН в митохондрии.

Челночные механизмы переноса водорода. Никотинамидные дегидрогеназы находятся не только в матриксе митохондрий, но и в цитозоле. Митохондриальная мембрана непроницаема для НАД, поэтому НАДН2, который образуется в цитозоле, может передать свой водород в митохондрию только с помощью специальных субстратных челночных механизмов. В митохондрию из цитозоля передается не сам НАДН2, а только водород, отнятый от него. Переносимый водород включается в молекулу вещества-челнока, способного проникать через митохондриальную мембрану. В митохондрии вещество-челнок отдает водород на митохондриальный НАД или ФАД и возвращается обратно в цитозоль. Два типа челночных механизмов: 1) малат-аспартатный (наиболее универсален для клеток организма). С высокой скоростью работает в миокарде, почечной ткани, печени. В этой транспортной системе водород от цитоплазматического НАД передается на митохондриальный НАД, поэтому в митохондриях образуется 3 молекулы АТФ и не происходит потери энергии при переносе водорода. Для ткани печени малат-аспартатная система особенно важна, так как из митохондрии выводится Ацетил-КоА (в виде цитрата), а водород попадает в митохондрию (в составе малата). Таким образом происходит не только челночный транспорт водорода от цитоплазматического НАД к митохондриальному, но и обратный транспорт Ацетил-КоА из митохондрий в цитоплазму в виде цитрата. В цитоплазме Ацетил-КоА может быть использован для синтеза жирных кислот; ЩУК может вернуться в цитоплазму и другим способом, вступив в реакцию трансаминирования с глутаминовой кислотой; 2) глицерофосфатный (встречается реже). Водород от цитоплазматического НАД передается на митохондриальный ФАД, и в митохондриях образуется 2 молекулы АТФ вместо 3 — происходит потеря энергии при переносе водорода. В клетке существует не только челночный транспорт водорода от цитоплазматического НАД к митохондриальному. Происходит и обратный транспорт Ацетил-КоА из митохондрий в цитоплазму в виде цитрата. В цитоплазме Ацетил-КоА может быть использован для синтеза жирных кислот.

7. Переваривание жиров и всасывание продуктов переваривания липидов.

Билет7.

1. Роль биохимии в формировании компетенции врача.Роль биохимии в профессии врача состоит в том, чтобы решить проблемы сохранения здоровья человека и выяснить причины различных болезней и найти пути их эффективного лечения. Одной из главных предпосылок сохранения здоровья является оптимальная диета, содержащая ряд химических веществ; главными из них являются витамины, некоторые аминокислоты, некоторые жирные кислоты, различные минеральные вещества и вода.

2. Структура и типы простых белков. Белки́ (протеи́ны, полипепти́ды) — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот. Все белки классифицируются на две группы: простые (протеины) и сложные (протеиды или холопротеины). Простые белки при гидролизе разрушаются до аминокислот(АМК), т.е построены только из остатков АМК, образующие полипептидные цепи субъединиц. Простые белки делятся на следующие группы:

· Протамины и гистоны

· Глютелины и проламины

· Альбумины и глобулины

Протамины и гистоны – обширная группа белков щелочного характера, поскольку в составе имеют диамино – монокарбоновые кислоты (лиз.арг.гис)

Гистоны находятся в ядрах клеток. Протамины содержатся в половых клетках животных и человека.

Альбумины и глобулины. .Самая распространённая группа белков. Молекулярная масса 25000-70000. Водорастворимые белки. Составляют 50% плазмы крови.Глобулины.Сходны по составу с альбуминами, но отличаются более высоким содержанием глицина. Нерастворимы в воде. Распространены в семенная масличных и бобовых растений

Протеиноиды или склеропротеины.Нерастворимы в воде, солевых растворах, разведённых кислота и щелочах. Богаты глицином, пролином, цистином. Пример: коллаген, эластин соед.ткани, кератин волос, ногтей, перьев. При длительном кипячении коллаген меняет свойства , становится водорастворимым, способным к желатинированию.(желатин).

Последнее изменение этой страницы: 2017-01-24; Нарушение авторского права страницы

Выведение конечных продуктов метаболизма

Образовавшиеся при распаде пищи конечные продукты метаболизма либо выводятся через покровы тела и стенки трахей (CO2), либо абсорбируются в задней кишке (H2O), либо удаляются с остатками непереваренной пищи — экскрементами (мочевина, мочевая кислота, аммиак и др.).

При гидролизе нуклеиновых кислот образуются углеводы, фосфорная кислота и обогащённые азотом пуриновые (аденин, гуанин) или пиримидиновые (цитозин, тимин) основания. В свою очередь, пуриновые основания, подвергаясь окислению и дезаминированию, дают начало мочевой кислоте и её производным: аллантоину, аллантоиновой кислоте, мочевине и аммиаку, которые выводятся из организма. Пиримидиновые основания, хотя и способны преобразовываться в мочевину и аммиак, обычно вновь вовлекаются в метаболические процессы.

При гидролизе белков образуются аминокислоты и некоторые из них — чаще всего богатые азотом аргинин и гистидин — входят в состав экскрементов (в весьма малых количествах). Обычно они используются в синтезе пуриновых оснований, образуя наряду с ними мочевину. Таким образом, конечные продукты метаболизма азотсодержащих соединений формируются при окислении пуринов или синтезируются из аминокислот (рис. 100).

Рисунок 100. Конечные продукты обмена азотсодержащих соединений и их превращения у насекомых (по Gillot, 1980)

Большинство наземных насекомых выделяют азот в виде слаборастворимых и нетоксичных для организма мочевой кислоты, аллантоина и аллантоиновой кислоты. Они удаляются вместе с обезвоженными экскрементами; при этом возможные потери влаги сводятся к минимуму. Водорастворимые и токсичные даже в малых концентрациях мочевина и аммиак требуют для выведения очень больших количеств воды. Не случайно, что именно эти соединения являются конечными продуктами метаболизма у водных форм. Прежде чем поступить в заднюю кишку, в формирующиеся здесь экскременты, все эти метаболиты накапливаются в гемолимфе и извлекаются из неё специализированными органами выделения — мальпигиевыми сосудами.

Читать еще:  Продукты пп на неделю

Мальпигиевы сосуды представляют собой длинные и тонкие трубочки, впадающие в кишечник на уровне пилорического отдела (см. рис. 81). Вместе с задней кишкой они обеспечивают экскрецию азотсодержащих метаболитов и постоянство ионного баланса гемолимфы. Лишь у ногохвосток, некоторых двухвосток и тлей они не развиты.

Рисунок 81. Схема кишечного тракта насекомых (по Шванвичу, 1949):

1 — слюнные железы; 2 — глотка; 3 — пищевод; 4 — зоб; 5 — провентрикулус; 6 — кардиальный клапан; 7 — перитрофическая мембрана; 8 — мальпигиев сосуд; 9, 10 — соответственно пилорический и ректальный клапаны; 11 — анус

Стенки сосудов образованы однослойным эпителием и мышечными волокнами. Оплетённые трахеями, но лишённые нервов, они способны только к миогенным червеобразным движениям. У щетино-хвосток, уховёрток и трипсов мальпигиевы сосуды не имеют мышц и пассивно колеблются в токах гемолимфы.

В простейшем случае, например у прямокрылых, мальпигиевы сосуды однообразны по всей длине и лишь насасывают плазму с содержащимися в ней экскретами (рис. 101). Далее эта «первичная моча» проникает в полость задней кишки и подвергается здесь реабсорбции. Все метаболически ценные вещества (H2O, Cl — , Na + , K + и др.) возвращаются в гемолимфу, а экскреты выводятся из организма. Сравнительно малая эффективность работы таких сосудов компенсируется их громадным числом (до 250 и более).

Рисунок 101. Строение и принципы работы мальпигиевых сосудов палочника (по Тыщенко, 1976):

1 — мальпигиевы сосуды; 2 — ампула; 3 — средняя кишка; 4 — задняя кишка

Сходным образом функционируют малочисленные (4–8) мальпигиевы сосуды некоторых жуков, однако их свободные концы врастают в стенку задней кишки. Высасывая из её полости воду, они энергично проводят первичную мочу, но не способны к её реабсорбции. У многих клопов происходит дифференциация отделов и эпителия сосудов и соответственно распределение функций по их длине. В дистальном отделе эпителиальные клетки несут плотный рабдориум и содействуют образованию первичной мочи. Переходя в проксимальный отдел, клетки которого снабжены рыхлым рабдориумом, она подвергается реабсорбции, и, таким образом, этот отдел принимает на себя функции задней кишки прямокрылых (рис. 102).

Рисунок 102. Строение и принципы работы мальпигиевых сосудов клопа Rhodnius prolixus St. (по Тыщенко, 1976):

1 — задняя кишка; 2 — средняя кишка; 3 — мальпигиевы сосуды

Ещё большей сложностью строения отличаются мальпигиевы сосуды двукрылых. Наряду с дистальным и проксимальным отделами в них выделяются промежуточный и медиальный отделы. В дистальном происходит насасывание мочевой кислоты и её солей, а также ионов Ca 2+ , тогда как в промежуточном и медиальном — воды. В проксимальком отделе реабсорбируются метаболически ценные продукты. У гусениц многих бабочек свойства сосудов, отмеченные у клопов и двукрылых, сочетаются с криптонефрией (рис. 103).

Рисунок 103. Строение и принципы работы мальпигиевых сосудов гусеницы бабочки Corcyra cephalonica (по Тыщенко, 1976):

1 — средняя кишка; 2 — тонкая кишка; 3 — ампула мальпигиева сосуда; 4 — прямая кишка

Заполняющая мальпигиевы сосуды жидкость изотонична гемолимфе, но отличается от неё по набору ионов. В частности, у палочника Carausius morosus Вr. ионы K + преобладают внутри сосуда, а ионы Na + — снаружи. Нарушение ионного баланса проявляется в разности потенциалов и возникновении электрохимического градиента.

Ионы K + активно транспортируются внутрь и, по-видимому, переносят молекулы воды вопреки градиенту диффузии. Несколько по-иному работают мальпигиевы сосуды кровососущего клопа Rhodnius prolixus St. В них активно проникают ионы K + и Na + , транспортирующие воду. Экскреты, поступающие в ихдистальные отделы в виде мочекислых солей натрия и калия, оказываются в слабощелочной среде (рН 7,2), но, продвигаясь проксимально, встречают слабокислую реакцию (рН 6,6) жидкости. В этих условиях Na + и K + освобождаются, а мочевая кислота кристаллизуется и выпадает в осадок (см. рис. 102).

Активность экскреции у Rhodnius prolixus St. существенно повышается (в 1 000 раз) под влиянием диуретического гормона, секретируемого в грудных ганглиях. Однако его выведение в гемолимфу происходит только при возбуждении рецепторов растяжения брюшка, что наблюдается всякий раз при насасывании крови. У саранчи Schistocerca gregaria Forsk. диуретический гормон стимулирует абсорбцию в мальпигиевых сосудах и тормозит реабсорбцию в ректальных железах задней кишки. У таракана Periplaneta americana L. наряду с диуретическим выделяется антидиуретический гормон.

Кроме мальпигиевых сосудов функции экскреции конечных продуктов метаболизма азота выполняют лабиальные железы Collembola, Thysanura и некоторых крылатых насекомых. У шелкопряда Hyalophora cecropia L. лабиальные шёлкоотделительные железы гусениц преобразуются в имагинальные органы, регулирующие водообмен и выделение экскретов. Продуцируемая придаточными половыми железами самцов некоторых тараканов мочевая кислота используется для покрытия сперматофоров и таким образом выводится из организма. Вместе с тем азотсодержащие метаболиты часто вообще не выводятся наружу, а, накапливаясь в уратных клетках жирового тела, в нефроцитах и в кутикуле, исключаются из процессов обмена веществ.

Согласованность и совершенство рассмотренных процессов метаболизма обеспечивают экономное расходование воды и энергетических субстратов, не допуская потерь сколько-нибудь ценных метаболитов. В этом отношении насекомые не уступают млекопитающим животным, несмотря на то что малые размеры тела определяют для них ряд ограничений. Однако ключевые пути метаболизма у тех и других принципиально сходны.

Читать еще:  Продукты содержащие b12

МЕТАБОЛИЗМ: Что это такое и как его улучшить

Метаболизм это – процесс химических превращений питательных веществ, попадающих в наш организм. Обмен веществ простыми словами — это когда организм, расщепляет пищу, которую мы потребили на мелкие составляющие и строит из них новые молекулы нашего организма.

Сам термин Метаболизм образовался от греческого слова «Metabole», что переводится как «перемена» или «превращение». Уж очень много это слово в себя включает – и гормональные особенности, и особенности телосложения и прямую зависимость телосложения от количества потребляемых вами калорий. Поэтому, чтобы внести ясность, давайте разбираться со всем по порядку.

Что такое обмен веществ и как сделать его лучше

В первую очередь, о метаболизме должны думать те, кого заботит «грамотное» похудение. Если говорить грубо, но понятно, метаболизм – это своего рода печь, от мощности которой зависит скорость сжигания наших калорий. Высокий уровень метаболизма вообще творит чудеса – сокращает объем ненавистных калорий до такого состояния, что организм начинает питаться собственными запасами. Так уходит жир.

Из чего состоит метаболизм?

RMR (Resting Metabolic Rate) – количество калорий, которого достаточно, чтобы поддерживать жизнедеятельность организма. У каждого индивидуума этот показатель индивидуален – это уже сугубо генетическая данность.

Следующая неотъемлемая часть метаболизма — масса тела и мышечная масса. Здесь есть прямая зависимость одного от другого – выше мышечная масса – выше метаболизм и наоборот. С чего бы это? Да просто пол килограмма мышц «уничтожают» 35-50 калорий за день. То же количество жира избавит лишь от 5-10 калорий.

Составляющая №3 – ваша щитовидная железа. Поэтому, ценный совет – тем, кому за 30 есть смысл сходить к доктору и сдать все анализы на гормоны + УЗИ щитовидной железы. Именно она оказывает прямое слияние на метаболизм и сжигание жиров.

Анаболизм и катаболизм

Два не менее важных понятия, напрямую связанных с здоровым метаболизмом.

Анаболизм – набор химических процессов, ответственных за ткани, клетки вашего организма, их развитие и за синтез аминокислот.

Катаболизм – расщепление пищевых молекул для последующего их превращения в энергию вашего тела.

Именно энергия, полученная от катаболизма необходима для полноценной жизни организма.

Так как же действительно использовать свой встроенный «жиросжигатель» в правильном направлении? Да все, в общем, не сложно.

Начальный этап – встаньте перед зеркалом, предельно объективно себя оцените и определитесь с типом своего телосложения — это то, с чем метаболизм непосредственно связан и, по сути, первая ступенечка к началу управления машиной сжигания собственного жира.

Все мы разные, но основная масса ученых сходится на трех типах строения человеческих тел:

Эктоморф

Обладает небольшим телом;

Форма грудной клетки – плоская;

Мышечную массу набрать довольно сложно;

Очень быстрый метаболизм.

Если вы тот самый «тощий» эктоморф, то есть необходимость в потреблении большого количества калорий. И тут есть маленькая несомненная радость – эктоморфу необходимо есть перед сном, чтобы дезактивировать процессы катаболизма. Почти все физические нагрузки у эктоморфов должны быть направлены на определенные группы мышц. Неплохо бы было пользоваться спортивными пищевыми добавками.

Мезоморф

Телосложение спортивное, атлетическое;

Форма тела прямоугольная;

Мезоморфы, как правило, очень сильные;

Не испытывают проблем с наращиванием мышечной массы;

Могут испытывать проблемы с набором излишнего веса.

Не имеют проблем с наращиванием мышц, также как и наращиванием лишнего жира. Это не есть хорошо – постоянно придется следить за тем, что употребляешь в пищу и в каком количестве. То есть, для мезоморфов жизненно важен правильно подобранный рацион питания. Тут еще и не обойтись без регулярных кардионагрузок.

Эндоморф

Округлые очертания фигуры;

И мышечная и жировая массы растут, как говорится, «на ура»;

Имеют проблемы с сбрасыванием лишнего веса;

Самое главное для эндоморфов – рассчитанная по калориям белковая диета + постоянные кардиотренировки – бег, велосипед, спортивная ходьба.

Следующий этап – разобраться с вытекающими из вышесказанного понятиями – быстрый и медленный метаболизм.

Медленный метаболизм – выражается в высоком аппетите и отсутствии желания двигаться и заниматься активными видами спорта. Здесь, в первую очередь, важна смена режима питания и пищевых привычек в целом. После, полученный результат уже легче будет поддерживать занятиями физкультурой.

Быстрый метаболизм – наоборот выражается в желании меньше есть и больше двигаться. Такие люди чаще всего огорчены тем, что им катастрофически сложно набрать мышечную массу несмотря на все усилия. Людям с быстрым метаболизмом необходим правильный, калорийный рацион питания и детально продуманная система тренировок, преобразующая полученную энергию в нужное русло.

Завершающий этап. Похудение и использование процессов метаболизма в вашем организме с умом.

От чего зависит метаболизм?

1. Возраст, вес, рост, пол, телосложение (о типах телосложения читайте выше);

2. Питание, физические нагрузки (и их грамотное сочетание в зависимости от типа строения тела);

3. Состояние здоровья (стабильный гормональный фон, что проверяется у доктора-эндокринолога);

4. Психическое здоровье (отсутствие стрессов и любых других расшатывающих психику факторов).

Процессы метаболизма в жировой ткани безумно медленны по сравнению с метаболизмом в ткани мышечной. Те, у кого действительно есть проблемы с лишним весом нуждаются в меньшем количестве энергии, но едят, все же, больше, чем необходимо. Эта лишняя «съеденная» энергия не расходуется, а стремительно уходит в жировые «запасы» нашего организма – а куда ее еще девать? Естественно, при таком метаболизме худеть не представляется возможным.

Читать еще:  Где содержится б12 в продуктах

Лишний жир, постепенно проникая во внутренние органы, влияет на стабильность работы эндокринной системы и расшатывает наш гормональный фон. У женщин, например, излишний жир в организме вызывает задержки или постоянные сбои циклов. Есть вероятность развития метаболического синдрома.

Что такое метаболический синдром?

Это такое состояние, при котором подкожная жировая прослойка приводит к серьезным нарушениям внутренних обменных процессов – липидных и углеводных. Это как раз тот случай, при котором человек начинает «пухнуть» буквально от всего. Появляются проблемы с сердцем и артериальная гипертензия. Резко повышается давление и количество сахара в крови.

Однако, нужно отметить, что все эти симптомы не относятся к метаболическому синдрому, если показатели вашего телосложения (объем талии и вес) в норме. Хотя, даже в этом случае, визит к доктору обязателен.

Как разогнать свой метаболизм, чтобы похудеть?

Перестать себя обманывать!

Убрать из рациона жиры и простые углеводы (шоколад, булки, пирожные, сливочное масло и т. д.)

Ограничиться нежирными белками (куриная грудка, молоко, яичный белок) и клетчаткой (фрукты, овощи). Так вы, наконец, улучшите обмен веществ и ускорите метаболизм.

Сократить углеводы – они наоборот, замедляют метаболизм.

Поднять мышечный тонус, заняться спортом, увеличить нагрузку на мышцы.опубликовано econet.ru.

P.S. И помните, всего лишь изменяя свое сознание — мы вместе изменяем мир! © econet

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Конечные продукты метаболизма у человека

Название работы: Понятие о метаболизме и метаболических путях. Ферменты и метаболизм. Понятие о регуляции метаболизма. Основные конечные продукты метаболизма у человека

Предметная область: Биология и генетика

Описание: Обычно в метаболических путях есть ключевые ферменты благодаря которым происходит регуляция скорости всего пути. Регуляция количества молекул фермента в клетке Известно что белки в клетке постоянно обновляются. Регуляция синтеза белка может происходить на любой стадии формирования белковой молекулы. Что касается распада ферментов то регуляция этого процесса менее изучена.

Дата добавления: 2015-02-20

Размер файла: 105.69 KB

Работу скачали: 17 чел.

Понятие о метаболизме и метаболических путях. Ферменты и метаболизм. Понятие о регуляции метаболизма. Основные конечные продукты метаболизма у человека

Метаболи́зм — полный процесс превращения химических веществ в организме , обеспечивающих его рост, развитие, еятельность и жизнь в целом. В живом организме постоянно расходуется энергия , причём не только во время физической и умственной работы, но и при полном покое (сне). Обмен веществ представляет собой комплекс биохимических и энергетических процессов, обеспечивающих использование пищевых веществ для нужд организма и удовлетворения его потребностей в пластических и энергетических веществах.

Метаболический путь – это последовательный ряд превращений химического вещества из исходного состояния в необходимое, проходящий через ряд промежуточных форм, где в каждом последующем акте превращения принимает участие необходимый фермент.

Все химические реакции в клетке протекают при участии ферментов. Поэтому, чтобы воздействовать на скорость протекания метаболического пути, достаточно регулировать количество или активность ферментов. Обычно в метаболических путях есть ключевые ферменты, благодаря которым происходит регуляция скорости всего пути. Эти ферменты (один или несколько в метаболическом пути) называются регуляторными ферментами; они катализируют, как правило, начальные реакции метаболического пути, необратимые реакции, скорость-ли-митирующие реакции (самые медленные) или реакции в месте переключения метаболического пути (точки ветвления).Регуляция скорости ферментативных реакций осуществляется на 3 независимых уровнях:

  1. изменением количества молекул фермента;
  2. доступностью молекул субстрата и кофер-мента;
  3. изменением каталитической активности молекулы фермента.

1. Регуляция количества молекул фермента в клетке Известно, что белки в клетке постоянно обновляются. Количество молекул фермента в клетке определяется соотношением 2 процессов — синтеза и распада белковой молекулы фермента. Синтез и фолдинг белка — многостадийный процесс. Регуляция синтеза белка может происходить на любой стадии формирования белковой молекулы. Наиболее изучен механизм регуляции синтеза белковой молекулы на уровне транскрипции, который осуществляется определёнными метаболитами, гормонами и рядом биологически активных молекул. Что касается распада ферментов, то регуляция этого процесса менее изучена. Можно только предполагать, что это не просто процесс протеолиза (разрушения белковой молекулы), а сложный механизм, возможно, определяемый на генетическом уровне.

2. Регуляция скорости ферментативной реакции доступностью молекул субстрата и коферментов Важный параметр, контролирующий протекание метаболического пути, — наличие субстратов, и главным образом — наличие первого субстрата. Чем больше концентрация исходного субстрата, тем выше скорость метаболического пути. Другой параметр, лимитирующий протекание метаболического пути, — наличие регенерированных коферментов. Например, в реакциях дегидрирования коферментом дегидрогеназ служат окисленные формы NAD+, FAD, FMN, которые восстанавливаются в ходе реакции. Чтобы коферменты вновь участвовали в реакции, необходима их регенерация, т.е. превращение в окисленную форму.

3. Регуляция каталитической активности ферментов Важнейшее значение в изменении скорости метаболических путей играет регуляция каталитическо й активности одного или нескольких ключевых ферментов данного метаболического пути. Это высокоэффективный и быстрый способ регуляции метаболизма.

Основные способы регуляции активности ферментов:

  1. аллостерическая регуляция;
  2. регуляция с помощью белок-белковых взаимодействий;
  3. регуляция путём фосфорилирования/дефосфорилирования молекулы фермента;
  4. регуляция частичным (ограниченным) протеолизом.
голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector